Prof. Buckley's academic interests include the study of vernacular architecture and cultural landscapes. His previous research includes an investigation of urban development related to the redwood lumber industry in nineteenth-century California and a study of the built environment of Latinos in California's Central Valley. In 2015, he served as a Fulbright Senior Fellow at the Universidad Politécnica Madrid studying new approaches for "urban regeneration" in historic neighborhoods in Spanish cities.

His current research examines the use of historic preservation approaches to assist minority and low-income communities. Recent work includes:

- "People in Place: Local Planning to Preserve Diverse Cultures," in Neil Silberman and Angela Labrador, eds., The Oxford Handbook of Public Heritage Theory and Practice (Oxford University, forthcoming)

E-mail: jbuckley@uoregon.edu
Phone: 541-346-3641
Office: White Stag Building

PhD, Architecture, UC Berkeley, 2000
MCRP, UC Berkeley, 1986
BA Art History & American Studies, Vassar University, 1982

JAMES BUCKLEY
ASSOCIATE PROFESSOR | DEPARTMENT OF HISTORIC PRESERVATION

Dr. Heath’s training includes a B.A. in English from Lake Forest College, an M.A. in Art History from the University of Chicago, and an M.A. and Ph.D. in American Studies from Brown University. His previous work experience includes positions as the State Architectural Historian for the Montana State Historic Preservation Office, Supervisor of Historical Interpretation at Mystic Seaport, and Professor of Architectural History and Historic Preservation at Montana State University and the University of North Carolina at Charlotte. Dr. Heath is a past 3-term member of the Board of Directors of the Vernacular Architecture Forum (VAF). Areas of specialization include vernacular architecture of the American West, New England worker’s housing, American building construction history, and vernacular architecture theory.

In addition to several articles and book chapters, he is the author of The Patina of Place: The Cultural Weathering of a New England Industrial Landscape, winner of the 2002 Abbott Lowell Cummings Prize by the VAF "In recognition of the outstanding work in North American vernacular studies," and Vernacular Architecture and Regional Design (2009). As founder of the Croatia Field School, an interdisciplinary program that focuses on the traditional stone architecture of Croatia’s Central Dalmatian Coast, he has served for several years as director and continues to foster its growth. Dr. Heath teaches American Architecture from a Preservation Perspective I, II, and III.

E-mail: kwheath@uoregon.edu
Phone: 541-346-2115
Office: 164 Lawrence Hall

PhD, American Studies, Brown University
MA, American Studies, Brown University
MA, Art History, University of Chicago
BA, English, Lake Forest College

KINGSTON HEATH
PROFESSOR | DEPARTMENT OF HISTORIC PRESERVATION
DONALD PETING
INSTRUCTOR & ASSOCIATE PROFESSOR EMERITUS OF ARCHITECTURE | HISTORIC PRESERVATION

Donald Petting is the Former Director of the Historic Preservation Program for the University of Oregon, former Director of the Pacific Northwest Preservation Field School, and former Associate Dean for the School of Architecture and Allied Arts. Professor Petting is a historical architect and maintains a consulting practice that focuses on 19th and early 20th century architecture. Areas of interest include traditional building technologies, early powered mills, and seismic retro-fitting of historic structures. Professor Petting has been a Fellow of the American Academy in Rome since 1978. In 2005, the National Council for Preservation Education honored his educational career with their James Marston Fitch lifetime achievement award.

E-mail: peting@uoregon.edu
Phone: 541-346-2993
Office: 486 Lawrence Hall
School: College of Design
The University of Oregon}

CHAD RANDL
VISITING PROFESSOR | DEPARTMENT OF HISTORIC PRESERVATION

Randl’s research involves various aspects of US domestic architecture. He recently co-edited a special issue of the APT Bulletin: The Journal of Preservation Technology on cast and wrought iron. His work includes:

“Look Who’s Designing Kitchens: Personalization, Gender, and Design Authority in the Postwar Remodeled Kitchen,” Buildings and Landscapes, 21 no. 2 (Fall 2014): 57-82
My creative practice is landscape design in a small firm focusing primarily on high-end residential, with some commercial and municipal, projects. Our work supports sustainability by creating timeless designs built with local, long-lived materials and including healthy soils. Within this framework I have excelled in designing with plants for deer resistance and clay tolerance. My favorite projects include habitat plants to support backyard creatures like birds, butterflies and a variety of pollinators. I am currently focused on compiling a climate resilient plant list made up of plants that are drought tolerant, can grow in clay soils, and are also cold hardy.

My heart lies at a larger scale where green infrastructure can play a role in healthy, livable cities. I am interested in plants for ecosystem services and helped create the spring plants curriculum to explore this concept. The idea that a linked system of green roofs, storm-water gardens, pollinator meadows, and edible gardens could support multiple ecological functions and buildability is appealing to me and I see potential in every stray ditch, abandoned alley, and vacant lot.

I have chosen the combination of professional practice and instruction to bring current field knowledge and methods to the university setting while keeping academic thinking alive in the profession. Each of these informs the other in my daily work.

I am currently exploring designed landscapes for climate resilience through a design studio course to determine how ecologically functional landscapes can fit into the developed urban fabric while focusing on aesthetic principles and human comfort in the face of climate change. I believe that landscape architects need to be leaders and educators in addition to project managers and liaisons for the earth sciences.

Students are involved through coursework in Plants, Technologies II, occasional studios and independent studies, through my role as the student ASLA faculty advisor and my practicum supervision position.

The theme that runs through the continuum of my creative work and scholarship consists of three intertwined threads of practice and thinking. The first thread is landscape palimpsests, which involves mapping historical patterns of human settlement and infrastructure and the social and physical legacies left in the contemporary landscape. The second related component is landscape perception and the deep influences sensory perceptions and cultural ideals have on how we build places. This thread involves a practice of temporarily altering physical landscapes, such as braiding fields of grass into sculptural forms. The third is a pursuit of new mapping methods that combine the representation of both measurable and indeterminate (i.e. phenomenological) aspects of landscape. Her creative practice and scholarship reference phenomenology, visual studies and perception theory while being grounded in techniques of drawing, art and fundamental spatial design principles.
My aim as a designer and pedagogue is to envision the future city through the potential of landscape. My teaching focuses on multi-functional landscapes, social justice engagement and productive landscape systems. My current research seeks to engage and develop “research through designing” methodologies in order to investigate infrastructural ecologies at the intersection of landscape design and planning, simulation modeling, restoration experiments and assessments, prescribed fire, and evolutionary processes. My core projects focus on biodiversity conservation and fire management in the context of climate change and human evolution.

My research reflects my lifelong passion for learning how to integrate people and their use of the land with native ecosystems and wildland-urban interfaces. This includes landscape planning, simulation modeling, restoration experiments and assessments, prescribed fire, and wildland-urban interfaces. Submitted to Anthropocene as an Invited Research Article.

I am an interdisciplinary scholar who contributes to the advancement of urban energy planning, climate-responsive urban design, green infrastructure, and climate resilience planning.

My research seeks to answer three major questions: (i) How do urban forms and landscapes best promote energy sustainability by reducing consumption and increasing renewable energy generation in cities? (ii) How does green infrastructure provide the greatest social benefits and ecosystem services in the long term? (iii) Beyond sustainability, how can we build communities more resilient to climate change and extreme weather?

Current and upcoming projects include:

2017 - 2018: "Solar Energy vs. Critical Habitats: Resolving "green" conflicts for conserving endangered Black-faced Spoonbill habitats in Taiwan" collaborating with the University of North Texas Geography; National Cheng Kung University in Taiwan; Funded by the National Geographic Society Science and Exploration Grant

2018 – 2019: "Intra-Urban Variability in Black Carbon Deposition: Rates, Pathways, and Determinants" collaborating with the University of North Texas Geography; Funded by the National Geographic Society Science and Exploration Grant

My primary research focuses are on planning, designing, and implementing sustainable water and sanitation (WASH) services in low- and middle-income countries. Additionally, I am the co-founder of the "resource sanitation" research initiative originally funded by the Bill and Melinda Gates Foundation on extreme low-cost, sanitation services in dense informal settlements. I am also the Chair of the Container-based Sanitation (CBS) Alliance, which is a coalition of CBS practitioners around the world with extensive experience in developing and providing CBS services (cbsa.global).

In addition to sanitation research, I have conducted extensive research on the topic of non-networked water supply in Mozambique. I specifically study the caloric energy women expend when fetching water. Other research topics include 1) water, energy, and resource recovery from waste streams; 2) sustainable delivery of water services in rural and urban settings; 3) development and analysis of entrepreneurial-based sanitation service delivery models; 4) creation and use of green space to enhance communities while providing wastewater services.
ROXI THOREN
ASSOCIATE PROFESSOR + DEPARTMENT HEAD| DEPARTMENT OF LANDSCAPE ARCHITECTURE | DEPARTMENT OF ARCHITECTURE

My research focuses on the integration of productivity in landscape architectural design, including a series of research and design projects around agriculture, forestry, and power. I am currently completing a book manuscript Farmscape: The Design of Productive Landscapes (co-authored with Phoebe Lickwar), which examines the integration of agriculture and landscape architecture throughout history.

My next project is Second Nature: Trees, Forests and Landscape Architecture, a book proposing a landscape architectural framework for integrating productive forests into landscape architectural design. Through a series of case studies, the book will explore the definition of a forest (as opposed to an urban canopy, or any number of other “tree gardens”), how to design for the long time frames of forests, and how to incorporate forest management into design practice.

Student engagement in this project could include archival research, field work recording the composition and structure of designed forests, GIS and other mapping, and creation of information visualization.

E-mail: rthoren@uoregon.edu
Phone: 541-346-3641
Office: 196 Lawrence Hall

MLA, University of Virginia, 2013
MArch, University of Virginia
BA, Architecture, Wellesley College

DAVE HULSE
PROFESSOR | DEPARTMENT OF LANDSCAPE ARCHITECTURE

David Hulse is Philip H. Knight Professor and former Chair in Landscape Architecture at the University of Oregon and a graduate of Harvard University’s Graduate School of Design, Cambridge, Massachusetts, 1984. He has taught courses and directed research in landscape architecture, forest management, and land use planning at the University of Oregon on development of spatial decision support systems for creating and evaluating alternative land and water use futures in the Willamette River Basin and elsewhere in Oregon. Hulse is a graduate of Harvard University’s Graduate School of Design, a Fulbright Scholar, and a recipient of the US Chapter of the International Association for Landscape Ecology’s Distinguished Landscape Practitioner Award.

Website: http://ise.uoregon.edu/
Email: dhulse@uoregon.edu
Phone: 541-346-3672
Office: 202A Pacific Hall

B.S.L.A. Colorado State University, College of Forestry and Natural Resources Ft. Collins, Colorado, 1981
M.L.A. (Distinction) Harvard University Graduate School of Design Cambridge, Massachusetts, 1984

DENNIS "WHITEY" LUECK
CAREER INSTRUCTOR | DEPARTMENT OF LANDSCAPE ARCHITECTURE

Whitey Lueck teaches Trees Across Oregon (LA 196) and The Nature of Eugene (LA 501) and regularly leads campus tree tours. He graduated summa cum laude from Pennsylvania State University with a degree in ornamental horticulture, then worked for three years as a horticulturist and landscape designer with municipal parks departments in Sweden, France, and Switzerland. After his return to the U.S., he completed a Masters in botany and forest ecology at Oregon State University in 1986. Whitey taught first in the landscape program at Lane Community College. In 1986, he began to offer at LCC field classes in natural-history—that took place from the Canadian Rockies to Mexico—and in 2004 opened his own nature-tour business called OUT-OF-DOORS. His Trains-to-Trees proposal recommends placing the railroad tracks through downtown Eugene in a trench, then covering the trench with a park.

The advocate for “universal access”—as practiced in Scandinavia, where one is free to walk anywhere, including on privately owned land—Whitey has opened his own property to the public. Visitors come and go as they please, and informative signs address interesting aspects of the design and maintenance of his house and garden.

For more about Whitey, go to https://sites.google.com/site/whiteylueck
Email: wlueck@uoregon.edu
Phone: 541-684-8716
Office: 196 Pacific Hall

BS, Landscape Horticulture; summa cum laude, Pennsylvania State University, 1974
MS, Plant Ecology Oregon State University, 1980

JEFF KRUEGER
INSTRUCTOR | DEPARTMENT OF LANDSCAPE ARCHITECTURE

Jeff Krueger is a planner, ecologist, and registered landscape architect in the state of Oregon and has over twenty five years of experience providing planning, design, and project coordination for local governments and non-profit organizations in the Willamette Valley. He operates Jeff Krueger Environments LLC in Eugene. He has previously worked for Lane County Governments, the U.S. National Park Service, and two private landscape design firms. Jeff has extensive planning and design experience in the areas of natural resources, parks and open space, land use, and bicycle and pedestrian facilities.

Website: http://www.jkenvironments.com/
Email: jkruege2@uoregon.edu
BS, Environmental Design, University of Massachusetts, 1987
BLA, University of Oregon, 1990
MLA, University of Oregon, 1992
HARPER KEELER
CAREER INSTRUCTOR | DEPARTMENT OF LANDSCAPE ARCHITECTURE

Harper received his undergraduate degree in Landscape Architecture from the University of Oregon in 1995, and has been involved with the Urban Farm Program since 1992. He began his teaching career as an adjunct instructor beginning in 2001 and has been directing the Urban Farm Program as a Career Instructor since 2008. In addition to running the farm, he serves on the Faculty Advisory Council of the UO Food Studies program.

Harper earned his M.L.A. in 2011 centering on experimental, place-based education within the pedagogy of Landscape Architecture. He was central to the creation of the Food for Lane County Grass Roots Garden Program beginning in 1996, and has extensive experience working with Urban Farm-related programs throughout our local agrarian community. As an active board officer with the Willamette Farm and Food Coalition, Harper has over ten years of experience in the local non-profit sector, working on issues related to food production, education, access and equity. His Professional Practice experience has been centered around the work he did while with the Eugene based Design-Build Firm, Daichi Landscape.

For more information about the Urban Farm Program, please visit the the Urban Farm website @ https://urbanfarm.uoregon.edu/

Email: hkeeler@uoregon.edu
Office: 229 Lawrence Hall
B.L.A., University of Oregon, 1995
M.L.A., University of Oregon, 2011

KENNETH HELPHAND
PROFESSOR EMERITUS | DEPARTMENT OF LANDSCAPE ARCHITECTURE

Kenneth I. Helphand is Knight Professor of Landscape Architecture at the University of Oregon where he has taught courses in landscape history, theory and design since 1974. He is a graduate of Brandeis University (1968) and Harvard's Graduate School of Design (MLA 1972).

He is the recipient of distinguished teaching awards from the University of Oregon (1989) and the Council of Educators in Landscape Architecture (1997). Helphand has guest lectured at dozens of universities and is a frequent visiting professor at the Technion - the Israel Institute of Technology. He is also a contributor to several books and articles, and is the editor of Defiant Gardens: Making Gardens in Wartime (2006), Defiant Gardens: The Making of Modern Israel (2002), and Yard Street Park: The Design of Suburban Open Space (with Cynthia Girling 1994). Helphand was a recipient of the Bradford Williams Medal, a Graham Foundation Grant, and Chair of the Senior Fellows at Dumbarton Oaks.

Website: http://defiantgardens.com/
In both my creative practice and research I am interested in flexible spaces and furnishings and how people use, adjust and change interiors over time. Most of my research focuses on commercial buildings such as modern office buildings and schools. In these I look at applied theories of flexibility and compare actual patterns of use and change. In my creative practice, I design, build, and write about flexible, fitted-out interior spaces and furnishings that accommodate and enable people. I employ both conventional and digital design and fabrication techniques and am energized by experimenting with new techniques and materials.

I enjoy working with students on research and offer independent studies and paid research assistantships to qualified students where possible. I seek out curious students who are motivated to learn new design, analysis and fabrication techniques.

Ed Roberts Campus Post Occupancy Evaluation (with Kyuho Ahn)

Designed by Leddy Maytum Stacy, The Ed Roberts Campus in Berkeley California houses disability rights organizations. The design integrates many elements which go well beyond current ADA codes in order to create a replicable universally designed building that can work for people with varying disability profiles. Professor Ahn and I are currently conducting a Post Occupancy Evaluation of the ERC that tests how universal design elements work for the occupants. Ongoing research tasks include analyzing data from a survey questionnaire, focus groups and behavioral observations.

Secret Life of Buildings Project:

This project examines how interior spaces in modern office buildings have changed over time. Using permit drawings from the City of Portland, we track changes to the floor plans of various tenants in buildings over a lengthy time span. The Equitable Building by Pietro Belluschi is our first case study to date and changes to the interior lease spaces show how building interiors have evolved over time in response to economic and organizational factors in office design.

Six board chest project:

This project involves digital design and fabrication of prototypical storage elements that can be down-loaded, customized and manufactured locally by means of CNC technology and 3D printing. Based on an historic precedent six-board chests (there are three designs thus far) are intended to reconnect people with simple elemental design in a new technological vernacular. Continuing work involves manipulating 3D models in Rhino, making a web page to distribute files and assembling prototypes.

E-mail: lzimmer@uoregon.edu
Phone: 541-346-2097
Office: 210 Lawrence Hall
MIArch, University of Oregon, 1990
BIArch, University of Kansas, 1982
KYU HO AHN

ASSOCIATE PROFESSOR | INTERIOR ARCHITECTURE PROGRAM & ARCHITECTURE

E-mail: kahn@uoregon.edu
Phone: 541-346-2984

I am an architect, scholar and practitioner, studying the intersection of architecture and interior architecture, typically associated with issues of scale and generally understood to be largely a matter of material and detail. As a professional, I have designed primarily residential and exhibition spaces. As different as these spaces may seem, they have an important feature in common: They are often small in size, necessitating strategies to expand space. Small spaces are important for a wide range of social issues. They are affordable to a wider range of incomes and they generally require fewer resources, using less material per person. They achieve a greater density for population using less land and they have the potential to cost less to build and maintain.

Current research speaks to the efficient use of space, with a focus on color and material studies - how to apply and how to teach it. My research projects primarily focus on two topics: Color in the Basic Design and Aesthetic Education, and Colorreflectivity, in the Context of Small Spaces.

E-mail: ehg@uoregon.edu
Phone: 541-346-3292
Office: 264 Onyx Bridge

ESTHER HAGENLOCHER

ASSOCIATE PROFESSOR | INTERIOR ARCHITECTURE PROGRAM & ARCHITECTURE

I am an architect, scholar and practitioner, studying the intersection of architecture and interior architecture, typically associated with issues of scale and generally understood to be largely a matter of material and detail. As a professional, I have designed primarily residential and exhibition spaces. As different as these spaces may seem, they have an important feature in common: They are often small in size, necessitating strategies to expand space. Small spaces are important for a wide range of social issues. They are affordable to a wider range of incomes and they generally require fewer resources, using less material per person. They achieve a greater density for population using less land and they have the potential to cost less to build and maintain.

Current research speaks to the efficient use of space, with a focus on color and material studies - how to apply and how to teach it. My research projects primarily focus on two topics: Color in the Basic Design and Aesthetic Education, and Colorreflectivity, in the Context of Small Spaces.
From Robert Grosseteste, On Light:

"For the inhabitants of the northern latitudes, light is a precious gift. In a country of lakes, snow and ice, light is often reflected from below, or it may turn into an illuminated mist or glowing matter. Light is the most subtle of all media of artistic expression; light can communicate grief or bliss, melancholy or joy, nostalgia or ecstasy. Light mediates between matter and spirit."

-Juhani Pallasmaa, Living in Finland

The architectural work of Alvar Aalto has achieved world renown for the luminous character of its spaces and forms. As the building type with the most demanding need for light, in various amounts and quality, the libraries designed by Aalto present us an opportunity to study the means that he employed to achieve their luminous character. These library designs represent a range in time from the early stages of his practice in 1927 to the years just before his death in 1976. As he matured as an architect, Aalto’s designs for the libraries became more sophisticated and the lighting strategies that he employed evolved and expanded. My research has been focused on developing a technical understanding of the lighting devices that Aalto employed through digital and physical modeling.

MICHAEL FIFIELD
PROFESSOR | DEPARTMENT OF ARCHITECTURE

Michael teaches architectural and housing design studios and courses on housing such as Housing Prototypes, Community Design, and Minimal Dwelling. His research interests focus on sustainable neighborhood design including issues of “vitality growth” and small(er) unit design. He is especially interested in how we can develop meaningful neighborhoods at higher densities with smaller residential units that are integrated with appropriate open space.

Current applied research through the University includes “A New Residential Design Strategy,” a set of principles and designs for new residential neighborhoods. His part-time professional practice concentrates on community and urban design consulting and small residential projects such as Accessory Dwelling Units. Recent projects through Fifield Architecture + Urban Design have included City of Eugene ADU Alley Study, Portland Courtyard Housing Design Competition Administration, Housing Design Principles for Collaboration Corvallis, the Minimal Live / Work Studio in Eugene, and the design and development for a tiny house at Emerald Village Eugene – a development of small houses for the formerly homeless. He also consults with local architectural firms during the initial stages of residential projects.
STEPHEN DUFF
ASSOCIATE PROFESSOR | DEPARTMENT OF ARCHITECTURE

For further details, please see the website: vitalarchitecture.org

Naturally Animated Architecture: Using the Movements of the Weather to Bring Indoor Spaces and Sustainability to Life.

Making Time: Cues to Positive Recollection, Interaction and Anticipation in Built Environments.

I connect all my scholarly endeavors with efforts in the classroom and field.

I have a background in practice, and among other projects I served as design team co-leader with Behnisch and Partners Architects on the IBN Dutch Institute for Forestry and Nature Research, a European Union pilot project for human and nature friendly design (1993-1996). I am currently a member of an international interdisciplinary team working on an urban green space design proposal in Cairo, Egypt, one that frontloads water related concerns and improves infrastructures in addressing larger goals of community development, heritage conservation, and environmental education.

My research and creative focus contribute on the creation of site and neighborhood scale architectural design and redevelopment to broader (urban) ecosystem function. I explore the pragmatic and theoretical dimensions of this commitment in my book Ecology and the Architectural Imagination (Routledge 2014). My recent scholarship and practice examine the profound design opportunities of ecologically responsive, resilient and distributed (decentralized) water and wastewater infrastructure in dense urban environments, with a goal that architectural projects deliver net positive watershed impact.

I have a background in practice, and among other projects I served as design team co-leader with Behnisch and Partners Architects on the IBN Dutch Institute for Forestry and Nature Research, a European Union pilot project for human and nature friendly design (1993-1996). I am currently a member of an international interdisciplinary team working on an urban green space design proposal in Cairo, Egypt, one that frontloads water related concerns and improved infrastructures in addressing larger goals of community development, heritage conservation, and environmental education.

I connect all my scholarly endeavors with efforts in the classroom and field.

*Email: bdurrell@uoregon.edu
Phone: 541-346-2256
Office: 624 Lawrence Hall
PhD, Columbia University, 1992
BA, Environmental Studies, Brown University, 1987
BA, Fine Arts (architectural and urban history), Harvard University, 1978
Off. 4R-White Stag Building, Portland*
I research how new tools and approaches can shape our thinking and interactions: looking at How and Why influence What results. I immerse myself in new ways of creating and communicating to understand how they can open up possibilities for architectural design and education. I study how integrating collaboration, analysis, and fabrication into conceptual design can improve decision-making and streamline workflows.

I advocate digital physical hybrids to have the best of both worlds. Online interactions are enriched by establishing trust face-to-face. I research how new tools and approaches can shape our thinking and interactions: looking at How and Why influence What ... collaboration, analysis, and fabrication into conceptual design can improve decision-making and streamline workflows.
Howard Davis
Professor | Department of Architecture

Cities provide the settings for much of human experience, and my research and teaching concern how the social and economic life of cities interact with design and buildings. This work happens within my general interest in how architecture reflects and enhances larger contexts of human culture and physical place.

My work has resulted so far in three books. The Production of Houses (co-authored) describes an experimental housing project in Mexico in which families took responsibility for the design and construction of their own houses. The Culture of Building is concerned with the history and present state of the social, economic and professional frameworks of building production and how they affect the human quality of the built environment. Living Over the Store prompted new questions on the social and economic sustainability of cities, leading to new work on cities as sites of work and production.

A new book in process, Working Cities: Architecture, Place and Production, deals with the idea that Western cities may regain their role as places where goods are manufactured and food is processed, and that such a regenerative role may be supported through architectural design, planning and policy.

Mark Donofrio
Associate Professor | Department of Architecture

Mark Donofrio is an architect, engineer and Associate Professor of Structure + Architecture in the Department of Architecture at the University of Oregon. He is responsible, along with Stephen Duff, for the core structural design curriculum for both the B.Arch and M.Arch programs. He serves as an advisor for graduate and undergraduate research projects through the PhD and MS Arch Programs and the Honors College. He teaches core, intermediate and advanced design studios, as well as advanced technical electives that examine the relationship between geometry, structure, and architecture.

His research and pedagogy examines how digital design tools, techniques and technologies can expand collaborative possibilities in the design and production of the built environment. By capturing a more diverse series of design parameters and considerations, this work helps to foster material innovation and material-efficient design solutions. He explores the impact that advances in digital design tools have had on changes to the means and methods of fabrication and construction and, conversely, what impact fabrication and construction methodology can have in a design process leveraging digital design tools.

His work utilizes emergent computational methods and advanced manufacturing techniques to achieve sustainable design solutions that challenge preconceived typologies while building upon the rich traditional relationship between design, engineering and construction. This work is informing the development and refinement of a design methodology intended to shift the discipline’s traditional preoccupation with form, towards one more focused on formation, thereby capturing the spatial and temporal considerations often excluded in design processes. This work serves as the basis for his design-research focused creative practice and lab where he and his students play the active role of creative practice and lab.

A few active projects include:

MODUmobile HOME
This design-research-build project explores the design and development of a modular mobile tiny home system. The system is developed to be easy to assemble by relatively unskilled labor, self-built, and easily transportable over time by the owners.

Resilient Shelters
This research project will identify ways in which modular buildings using CLT panels can provide resilient and sustainable structures in environments with limited resources that face synthetic and natural threats.

Convergent Craft
This project examines the social, cultural, political, economic and ecological impacts digital technologies are having on the design and production of the built environment.

If you are interested in collaborating on these projects, or to discuss other potential opportunities, please contact Associate Professor Donofrio at donofrio@uoregon.edu.
explore new research topics and training in the lab's current projects with Elzeyadi’s research group. This is typically a good start for engaging with the lab projects.

Positions, research assistantships, summer internship, and graduate research employment. The lab offers a 1-4 credit research practicum in fall and winter terms to

Possible opportunities for engagement with the HiPE lab group include supervised independent studies, M.Sc. theses, Ph.D. dissertations, work-study, hourly work

Interested students and collaborators are encouraged to send an email with a current resume highlighting interests and skills to schedule an appointment to meet.

How to Engage:

Lighting, Architecture, and Neuroscience (LAN): We are collaborating with multiple research groups in physics, psychology, physiology, and neuroscience to investigate the relationship between different lighting and daylighting spectrums and their impacts on human performance, stress, and stress recovery. This is achieved through a number of experiments utilizing run rooms in the LISB building.

Indoor Environmental Quality (IEQ) and Occupants Health (IEQ Toolbox®): A number of related projects assessing the impacts of green certified buildings on IEQ, occupants' satisfaction, and health in offices, laboratories, educational buildings, and healthcare settings.

Net-X Technology Architecture (NeXT): Design assistance and consulting services with professional practice firms related to net-zero energy, water, and emissions architecture as well as IEQ simulations and researcher, I am interested in microbiomes in buildings, biofilms and communities of bacteria because, like the oral microbiome, the stability of a diverse microbial community in buildings could influence pathogens and be the difference between health and disease, especially among vulnerable populations such as in daycares, nursing homes and hospitals.

MARK FRETZ
RESEARCH ASSISTANT | DEPARTMENT OF ARCHITECTURE

My research is focused on exploring and designing synergies that optimize human occupant health while reducing energy use in buildings. An important theme in my exploration is understanding how human migration from outdoor to indoor dwelling has affected evolutionary mechanisms connected with health and how architectural design can restore these evolutionary relationships.

As a former dentist in the Public Health Service, I was interested in oral microbiomes and biofilms. The treatment of these films and stability of the microbial community could be the difference between health or the need for surgical incision and drainage. As a designer and researcher, I am interested in microbiomes in buildings, biofilms and communities of bacteria because, like the oral microbiome, the stability of a diverse microbial community in buildings could influence pathogens and the difference between health and disease, especially among vulnerable populations such as in daycares, nursing homes and hospitals. However, evidence is also mounting that due to indoor living, humans have diminished contact to the innocuous outdoor microbes with which we evolved and even non-vulnerable populations may be influenced by the composition of the indoor microbiome through insufficient immune system stimulation resulting in dysregulation and conditions such as asthma.

Previous work by the Biology and the Built Environment Center has demonstrated an architectural influence on indoor microbial ecology, including ventilation, occupancy and spatial adjacency. My work with the Center builds on previous work to examine architectural influence of daylight, including indoor distribution and glazing spectral characteristics, on structuring indoor microbial communities to be more diverse and similar to outdoor communities. In the Public Health Service, we used to say, “nothing cures like sunlight and cold steel” and I’m intrigued by the early modernist use of sunlight and cold steel to shape architectural form responsive to human health, especially among vulnerable populations such as in daycares, nursing homes and hospitals. However, evidence is also mounting that due to indoor living, humans have diminished contact to the innocuous outdoor microbes with which we evolved and even non-vulnerable populations may be influenced by the composition of the indoor microbiome through insufficient immune system stimulation resulting in dysregulation and conditions such as asthma.

As a former dentist in the Public Health Service, I was interested in oral microbiomes and biofilms. The treatment of these films and stability of the microbial community could be the difference between health or the need for surgical incision and drainage. As a designer and researcher, I am interested in microbiomes in buildings, biofilms and communities of bacteria because, like the oral microbiome, the stability of a diverse microbial community in buildings could influence pathogens and be the difference between health and disease, especially among vulnerable populations such as in daycares, nursing homes and hospitals. However, evidence is also mounting that due to indoor living, humans have diminished contact to the innocuous outdoor microbes with which we evolved and even non-vulnerable populations may be influenced by the composition of the indoor microbiome through insufficient immune system stimulation resulting in dysregulation and conditions such as asthma.

I am also interested in exploring our evolutionary connection to changing radiant thermal conditions and how structuring our thermal physiologic and chronobiologic experience in buildings to be more like natural systems could have health and energy benefits.

BA, Bethel College, 1998

Office: White Stag Building, Portland
Phone: 503-412-3656
E-mail: mfretz@uoregon.edu

IHAB ELZEYADI
PROFESSOR | DEPARTMENT OF ARCHITECTURE | DIRECTOR, HIGH PERFORMANCE ENVIRONMENTS LAB

Professor Ihab Elzeyadi research and creative practice focus on design for indoor environmental quality in green buildings and its impact on occupants health. He has provided consulting services for the design of a number of high performances and net-zero energy buildings including offices, K-12 schools, and hospitals. He is the founder and director of the High Performance Environments Laboratory (HiPE). He is a member of the Oregon BEST signature research laboratory with expertise in indoor environmental quality, design research, and design assistance services. HiPE lab research explores the relationship between high performance buildings design and their triple bottom-line impacts on people, planet, and productivity. The lab supports collaboration and sharing of expertise and resources between the green building industry and academics and students in multiple departments at the University of Oregon and other OUS campuses. The HiPE lab generates information for use in green buildings research and practices.

Lighting, Architecture, and Neuroscience (LAN): We are collaborating with multiple research groups in physics, psychology, physiology, and neuroscience to investigate the relationship between different lighting and daylighting spectrums and their impacts on human performance, stress, and stress recovery. This is achieved through a number of experiments utilizing run rooms in the LISB building.

Indoor Environmental Quality (IEQ) and Occupants Health (IEQ Toolbox®): A number of related projects assessing the impacts of green certified buildings on IEQ, occupants' satisfaction, and health in offices, laboratories, educational buildings, and healthcare settings.

Net-X Technology Architecture (NeXT): Design assistance and consulting services with professional practice firms related to net-zero energy, water, and emissions architecture as well as IEQ simulations and researcher, I am interested in microbiomes in buildings, biofilms and communities of bacteria because, like the oral microbiome, the stability of a diverse microbial community in buildings could influence pathogens and be the difference between health and disease, especially among vulnerable populations such as in daycares, nursing homes and hospitals.

I am also interested in exploring our evolutionary connection to changing radiant thermal conditions and how structuring our thermal physiologic and chronobiologic experience in buildings to be more like natural systems could have health and energy benefits.

BA, Bethel College, 1998

Office: White Stag Building, Portland
Phone: 503-412-3656
E-mail: mfretz@uoregon.edu

MARK FRETZ
RESEARCH ASSISTANT | DEPARTMENT OF ARCHITECTURE

My research is focused on exploring and designing synergies that optimize human occupant health while reducing energy use in buildings. An important theme in my exploration is understanding how human migration from outdoor to indoor dwelling has affected evolutionary mechanisms connected with health and how architectural design can restore these evolutionary relationships.

As a former dentist in the Public Health Service, I was interested in oral microbiomes and biofilms. The treatment of these films and stability of the microbial community could be the difference between health or the need for surgical incision and drainage. As a designer and researcher, I am interested in microbiomes in buildings, biofilms and communities of bacteria because, like the oral microbiome, the stability of a diverse microbial community in buildings could influence pathogens and be the difference between health and disease, especially among vulnerable populations such as in daycares, nursing homes and hospitals. However, evidence is also mounting that due to indoor living, humans have diminished contact to the innocuous outdoor microbes with which we evolved and even non-vulnerable populations may be influenced by the composition of the indoor microbiome through insufficient immune system stimulation resulting in dysregulation and conditions such as asthma.

As a former dentist in the Public Health Service, I was interested in oral microbiomes and biofilms. The treatment of these films and stability of the microbial community could be the difference between health or the need for surgical incision and drainage. As a designer and researcher, I am interested in microbiomes in buildings, biofilms and communities of bacteria because, like the oral microbiome, the stability of a diverse microbial community in buildings could influence pathogens and be the difference between health and disease, especially among vulnerable populations such as in daycares, nursing homes and hospitals. However, evidence is also mounting that due to indoor living, humans have diminished contact to the innocuous outdoor microbes with which we evolved and even non-vulnerable populations may be influenced by the composition of the indoor microbiome through insufficient immune system stimulation resulting in dysregulation and conditions such as asthma.

I am also interested in exploring our evolutionary connection to changing radiant thermal conditions and how structuring our thermal physiologic and chronobiologic experience in buildings to be more like natural systems could have health and energy benefits.

BA, Bethel College, 1998

Office: White Stag Building, Portland
Phone: 503-412-3656
E-mail: mfretz@uoregon.edu
The recent symposium "Next Generation Schools" in Portland with school advocates and officials of Portland Public Schools (PPS). The symposium was organized to promote design excellence in the $1.2 billion Portland Public Schools rebuilding program. Attended by an audience of 370 participants, the symposium included prominent architects and educators from North America and abroad, including speakers from Finland and Colombia. Sponsors included the American Institute of Architects (AIA) Portland, Architecture, Media, Politics, Society (AMPS), a global organization based in the UK.

Links: https://www.youtube.com/watch?v=eYkuK0oQbNg

Since 2016, I have been involved in research and design with the Pies Descalzos Foundation of Colombia. The Foundation builds and participates in the operation of schools in marginalized communities of Colombia. Current work focuses on new schools in Barranquilla and Cartagena, Colombia, and a design monograph, "Schools in Colombia," to help guide the design of future schools in the country. Graduate students are currently working on the design studies and design monograph.

My current research focus is urban public schools and the impact of changing learning/teaching methods on school design. I was recently appointed by the Portland Superintendent of Schools to serve on the Master Plan Committee and Design Advisory Committees for the new Lincoln High School in Portland. The $180 million project will be the first new public high school to be built in the city of Portland in over 50 years.

My research and teaching focus on urban design and the built environment as a generator of community vitality. Awarded a Research Innovation Award on the theme of Community and Society – Research Connections, I continue to connect architectural research, creative practice and community needs. Understanding the physical form and social fabric of towns sets a context of making good decisions about building new schools, clinics, and libraries, that can sustain community life.

I study towns in rural Oregon, coastal new England, and the Marche and Veneto regions of Italy. I am interested in their spatial character, as they have developed over time, and how urban design and architecture can increase their quality as places to live and work. Honing in on the role of public space in towns, I am working on a comparative study of the Italian piazza in historic and contemporary incarnations with a comprehensive model that analyzes form, building fabric and containment, social time, and how urban design and architecture can increase their quality as places to live and work. Honing in on the role of public space in towns, I am working on a comparative study of the Italian piazza in historic and contemporary incarnations with a comprehensive model that analyzes form, building fabric and containment, social time, and how urban design and architecture can increase their quality as places to live and work. Honing in on the role of public space in towns, I am working on a comparative study of the Italian piazza in historic and contemporary incarnations with a comprehensive model that analyzes form, building fabric and containment, social time, and how urban design and architecture can increase their quality as places to live and work. Honing in on the role of public space in towns, I am working on a comparative study of the Italian piazza in historic and contemporary incarnations with a comprehensive model that analyzes form, building fabric and containment, social time, and how urban design and architecture can increase their quality as places to live and work. Honing in on the role of public space in towns, I am working on a comparative study of the Italian piazza in historic and contemporary incarnations with a comprehensive model that analyzes form, building fabric and containment, social time, and how urban design and architecture can increase their quality as places to live and work. Honing in on the role of public space in towns, I am working on a comparative study of the Italian piazza in historic and contemporary incarnations with a comprehensive model that analyzes form, building fabric and containment, social time, and how urban design and architecture can increase their quality as places to live and work. Honing in on the role of public space in towns, I am working on a comparative study of the Italian piazza in historic and contemporary incarnations with a comprehensive model that analyzes form, building fabric and containment, social time, and how urban design and architecture can increase their quality as places to live and work. Honing in on the role of public space in towns, I am working on a comparative study of the Italian piazza in historic and contemporary incarnations with a comprehensive model that analyzes form, building fabric and containment, social time, and how urban design and architecture can increase their quality as places to live and work. Honing in on the role of public space in towns, I am working on a comparative study of the Italian piazza in historic and contemporary incarnations with a comprehensive model that analyzes form, building fabric and containment, social time, and how urban design and architecture can increase their quality as places to live and work. Honing in on the role of public space in towns, I am working on a comparative study of the Italian piazza in historic and contemporary incarnations with a comprehensive model that analyzes form, building fabric and containment, social time, and how urban design and architecture can increase their quality as places to live and work. Honing in on the role of public space in towns, I am working on a comparative study of the Italian piazza in historic and contemporary incarnations with a comprehensive model that analyzes form, building fabric and containment, social time, and how urban design and architecture can increase their quality as places to live and work. Honing in on the role of public space in towns, I am working on a comparative study of the Italian piazza in historic and contemporary incarnations with a comprehensive model that analyzes form, building fabric and containment, social time, and how urban design and architecture can increase their quality as places to live and work. Honing in on the role of public space in towns, I am working on a comparative study of the Italian piazza in historic and contemporary incarnations with a comprehensive model that analyzes form, building fabric and containment, social time, and how urban design and architecture can increase their quality as places to live and work. Honing in on the role of public space in towns, I am working on a comparative study of the Italian piazza in historic and contemporary incarnations with a comprehensive model that analyzes form, building fabric and containment, social time, and how urban design and architecture can increase their quality as places to live and work. Honing in on the role of public space in towns, I am working on a comparative study of the Italian piazza in historic and contemporary incarnations with a comprehensive model that analyzes form, building fabric and containment, social time, and how urban design and architecture can increase their quality as places to live and work. Honing in on the role of public space in towns, I am working on a comparative study of the Italian piazza in historic and contemporary incarnations with a comprehensive model that analyzes form, building fabric and containment, social time, and how urban design and architecture can increase their quality as places to live and work. Honing in on the role of public space in towns, I am working on a comparative study of the Italian piazza in historic and contemporary incarnations with a comprehensive model that analyzes form, building fabric and containment, social time, and how urban design and architecture can increase their quality as places to live and work. Honing in on the role of public space in towns, I am working on a comparative study of the Italian piazza in historic and contemporary incarnations with a comprehensive model that analyzes form, building fabric and containment, social time, and how urban design and architecture can increase their quality as places to live and work.
Students at all levels are welcome to participate in the above research. Graduate students and undergraduate students have participated in these projects in virtually every field of the above (including advanced GIS software such as ArcGIS) are an integral part of the investigation and have involved A. Ceen, N. Camerlenghi, E. Steiner and G. Hackett. A significant initial effort has been published to geo-reference his map and archive at https://exhibits.stanford.edu/lanciani. Visualization and analytical methods for the study of urban design, a project that began during my graduate studies at Cornell with Colin Rowe. This topic has centered on the cartographic and related documents of Rome. Results include “The Interactive Nolli Map Website” at http://nolli.uoregon.edu/ and “Imago Urbis: Giuseppe Vasi’s Grand Tour of Rome” at http://vasi.uoregon.edu/.

My work currently investigates the 1901 archeological map of Rome by Rodolfo Lanciani showing that city as a series of layers from antiquity to the present. The results of this work have been constructed, and the fourth is in progress.
A sustainable future, for the design of buildings, lies in design integration—making key design decisions about energy use early in the process; encouraging designers to evaluate building performance through post-occupancy follow up; fostering discussion among educators, architects, engineers, and students about design technologies; and promoting a better and closer union between the fields of architecture and engineering.

My work includes books: Mechanical and Electrical Equipment for Buildings, 12th ed. (with co-author Walter Grondzik) affectionately known as “MEEB”, a preeminent teaching and practice reference for building environmental control systems. The Green Studio Handbook 3rd ed. provides forty-three selected environmental strategies including a description of principle and concept, step-by-step procedures for integrating the strategy, and 10 case studies demonstrating how it all goes together. Passive House Details: Solutions to High Performance Design, written with UO Professor Donald Corner and CHPC/architect Jan Fillinger, with numerous clearly drawn construction details and construction images and 14 case studies; also numerous edited case study books of building performance case studies conducted by award-winning graduate and undergraduate students.

My research areas include adaptive and mitigation strategies for climate change, thermal comfort, natural ventilation in tropical schools, building performance post-occupancy evaluation, zero net energy strategies, building energy metrics, and collaborative practices. I believe that integration of these architectural issues yields better buildings. I enjoy studying these issues collaboratively with colleagues and students via seminars, design studios, research seminars, and funded research projects. Pedagogy and curriculum innovation is a primary interest because of the national shortage of qualified teachers in building science.

I was principal investigator of the Agents of Change project, funded by the U.S. Department of Education Fund for the Improvement of Post-Secondary Education (FIPSE). I have served as board member for the Architectural Research Centers Consortium; past president of the Society of Building Science Educators, member of several ASRAEE committees; and the USGBC’s Formal Education Committee. Students have also participated with me in design charrettes, workshops, and presentations in China, England, Japan, and Korea and Singapore. I am the Director of the Technical Teaching Certificate program and the NetZED Laboratory.

E-mail: akwok@uoregon.edu
Phone: 541-346-2126
Office: 100 Pacific Hall
PhD, Architecture, UC Berkeley, 1997
MA, UC Berkeley, 1990
VMA (Dance/Performing), University of Hawaii, 1980
BSA (Occupational Therapy), California State University, Fullerton, 1978

My research focuses on sustainable urban design and on an area called Urbanism Next that looks at the impacts of emerging technologies on cities. With sustainable urban design, I am working on research that catalogs and relate the disparate pieces of code that make up sustainable strategies in urban design. This work organized the broad range of work that fits under urban design (physical design, land use, transportation, ecology, ‘guiding’ architectural design, water systems, watershed management, parking policy/design, etc.) and defines how these elements relate to each other, potential synergies, and best practices for each area.

Urbanism Next is a research initiative of the Sustainable Cities Initiative (SCI) (which I Co-Founded and Co-Direct). This research initiative is focused on how autonomous vehicles, e-commerce and the sharing economy are impacting city form, design and development. In this multidisciplinary work we are not looking at the technologies themselves as much as we are interested in their secondary impacts on things like land use, street design, neighborhood design, equity, environmental pressures on sprawl, etc. This research initiative incorporates a national network of partners in the public, private and academic sectors and spans experts in urban design, architecture, planning, landscape architecture, public administration, law, business and journalism. You can find out more about this at http://urbanismnext.com.

In addition toUrbanism Next, the Sustainable Cities Initiative has a number of other projects we run. A multi-disciplinary think-tank here at the University of Oregon, SCI is focused on research, education, training, and policy work on issues relating to sustainability and the built environment. SCI has a number of research endeavors that would be of interest to students in any of the design fields. SCI is also the organizer of the Sustainable City Year Program (SCYP) where approximately 30 courses from over 10 disciples at UO partner each year with an Oregon city to work on real-world, applied projects in that community. Students interested in any of the research mentioned above are encouraged to contact me to discuss your interest and potential opportunities.
HAJO NEIS

ASSOCIATE PROFESSOR | DEPARTMENT OF ARCHITECTURE

My current research, creative work, or design research is connected in one way or another to three focused organizations and my own office. 1. Portland Urban Architecture Research Laboratory, PUARL, 2. Center for Environmental Structure, CES; 3. Collaborative for Inclusive Urbanism, CIU, inclusiveurbanism.org. 4. My own office, HNA.

The main purpose of PUARL is to conduct and promote activities in urban architecture and urban design research that help to improve the quality of buildings and the city. We attempt to integrate wholeness and sustainability into the architectural and urban design process by conducting basic and applied research throughout the Portland region and other parts of the nation and the world, in urban architecture and urban design, with pattern languages, urban morphologies, building typologies, and generative processes, for civic groups, public agencies, professional firms, and progressive development interest. PUARL (M. N. director), is part of the College of Design, School of Architecture and Environment, SAE, and University of Oregon in Eugene and Portland.

Current Projects for CES include:
- 'Development of the 'Christopher Alexander Archives' and formation of a new CES structure and website. CES is a well-known Arch. NGO – H. Neis board member.

Current Projects for PUARL Research Seminar, scholarly work and some funded work include:
- 'Generative and Regenerative Process and Design.' (PUARL Conference 2016)
- Preparation for next International PUARL Conference 2018: 'Migration, Refugees, and Pattern Languages.' (new conference website in preparation)
- 'Refugee Pattern Language,' framework for integration.

Current projects for PUARL research seminar, scholarly work and some funded work include:
- Refugee Pattern Languages, framework for integration.
- Preparation for next International PUARL Conference 2018: 'Migration, Refugees, and Pattern Languages.' (new conference website in preparation)
- Generative and Regenerative Process and Design. (PUARL Conference 2016)

Current Projects for CIU Include:
- Development of the ‘Christopher Alexander Archives’ and formation of a new CES structure and website. CES is a well-known Arch. NGO – H. Neis board member.
- My own office, HNA.

My research interests are closely connected to my active professional practice, which seeks to apply consistent principles to a wide range of project types. Specific areas of interest include: planning and design processes that deeply engage owners and users in understanding environments for people with disabilities and developmental disabilities that promote quality of life, independence and community integration; environments for early childhood development; livability in contemporary multi-family housing; and higher performance outcomes from conventional and specifically wood-frame building systems in the Northwest.

M. Arch., UC Berkeley, 1979
MCP, City Planning, UC Berkeley, 1980
PhD, Architecture, UC Berkeley, 1989
Office: 459 White Stag Building, Portland
Phone: 503-412-3731
E-mail: hajoneis2@uoregon.edu

JOHN ROWELL

ASSOCIATE PROFESSOR | DEPARTMENT OF ARCHITECTURE

My design and research objectives are rooted in the belief that the exploration and application of new technologies for the sake of society is becoming increasingly relevant as we move forward in this digital age. I am interested in the intersection of new technologies in design and their impact on the local to global sense of culture and identity. My academic and professional pursuits follow an investigative process with the aim of discovering emergent systems which seed generative design strategies. My objective is to give agency to the design process through a systematic exploration of generative strategies using digital tools, and to contextualize the resulting design in identity and locality.

As a graduate of the Institute for Advanced Architecture of Catalonia (IAAC), I have specialized training in intelligent cities and digital morphogenesis. My dissertation focused on the mathematical translation of natural geometries and their application in intelligent urban systems. This interest in natural systems and their architectural application has led to an ongoing research agenda focused on minimal surface structures in architecture. The leading outcome of my efforts has been the development of a research-based design process which focuses on the exploration of mathematical and material geometry systems as agents of design. This process results in integrative design projects that simultaneously respond to diverse and complex inputs and criteria.

BS, Mathematics, University of British Columbia, 1984
MArch, University of Oregon, 1990
Phone: 541-505-1104
E-mail: marziahr@uoregon.edu

MARZIAH RAJABZADEH

ADJUNCT INSTRUCTOR | DEPARTMENT OF ARCHITECTURE

My design and research objectives are rooted in the belief that the exploration and application of new technologies for the sake of society is becoming increasingly relevant as we move forward in this digital age. I am interested in the intersection of new technologies in design and their impact on the local to global sense of culture and identity. My academic and professional pursuits follow an investigative process with the aim of discovering emergent systems which seed generative design strategies. My objective is to give agency to the design process through a systematic exploration of generative strategies using digital tools, and to contextualize the resulting design in identity and locality.

As a graduate of the Institute for Advanced Architecture of Catalonia (IAAC), I have specialized training in intelligent cities and digital morphogenesis. My dissertation focused on the mathematical translation of natural geometries and their application in intelligent urban systems. This interest in natural systems and their architectural application has led to an ongoing research agenda focused on minimal surface structures in architecture. The leading outcome of my efforts has been the development of a research-based design process which focuses on the exploration of mathematical and material geometry systems as agents of design. This process results in integrative design projects that simultaneously respond to diverse and complex inputs and criteria.

BArch, University of Tehran, Iran, 2010
MArch, Institute for Advanced Architecture of Catalonia, Spain, 2013
Phone: 503-346-3694
E-mail: jrowell@uoregon.edu
PHILIP SPERANZA
ASSISTANT PROFESSOR | DEPARTMENT OF ARCHITECTURE

Human-Scale Site Analyses Using GIS-Based Electronic and Observational Design Processes

My research focuses on new ways of understanding time-based social and ecological phenomena at the granular scale of human-scaled space. I work with new digital design processes to understand the urban environment and better engage public participation to inform urban and architectural design. This research links rapid advances in mobile location technology with Arduino sensor platforms and Grasshopper parametric visualization software to now make the collection of extremely fine-grained environmental data accessible as an integrated design process for architects. With this in mind, I have been testing the use of parametric GIS-based remote sensing devices to produce human-scaled site analyses at two contrasting design scales: 1. the single-dwelling rural lot, and 2. the metropolitan superblock. Research collaborators include experts in air pollution, social science, urban psychology, landscape architecture, interaction design and robotics. I have worked with Steven Holl, 1000 Architects and ITL in New York, Carlos Ferrater in Barcelona, and public artist Janet Echelman.

I. Detailed evaluation of existing environments with a view to improving them (analyses of urban spaces, and new building site analyses)

II. Evaluation of newly designed environments, during the process of design, during construction, and after completion (design modeling, construction site analyses, and post-occupancy evaluation)

III. Interactive built environments which respond to human and environmental variables and convey information in ways that engage their occupants

Data Visualization

Dataset Acquisition, On-site Geospatial Data Creation, GIS

Arduino Sensor Prototyping, Remote Sensing in Air, Light, Temperature, Moisture, Sound

Rhino Grasshopper Parametric Computation, Maya Animations

Design Practice Methods: Speranza Architecture + Urban Design

*BIM Management desired (3-5 years of professional experience preferred)

Wroclaw Grasshopper Design Modeling, Analysis and CNC RhinoCAM

Model Making

If you are interested in any of these subjects, please send me an email.

E-mail: speranza@uoregon.edu
Phone: 541-346-8756
Office: 860 Lawrence Hall
BA, Mathematics; Brown University, 1975
MA, Masters in Architecture, University of Virginia, 1977

JUDITH SHEINE
PROFESSOR | DEPARTMENT OF ARCHITECTURE

My research is focused on the relationships of design and technology. As Director of Design for the TallWood Design Institute, a collaboration between UO’s College of Design and Oregon State University’s College of Engineering, I have been working with civic organizations, manufacturers, design professionals, faculty and students to develop and demonstrate new uses of mass timber in buildings, as well as to eliminate barriers to adoption of new advanced engineered timber structural systems. Projects include the Springfield Parking Garage and the Lane County Courthouse, both with Associate Professor Mark Donofrio, and the UO Hayward Field West Grandstands expansion; these were interdisciplinary studios collaborating with Cal Poly Pomona Civil Engineering Professor Mikhail Gershfeld and his students.

I have also focused on analysis of the work of Southern California modern architects in publications and exhibits. I have published and lectured extensively on the work of the architects R.M. Schindler. Publications include R.M. Schindler (Phaidon Press, 2001), and, most recently, Schindler, Kings Road, and Southern California Modernism (University of California Press, 2012), co-authored with Robert Sweeney. Work focused more broadly on Southern California modern architects includes an exhibit I co-curated with Cal Poly Pomona Professor Lauren Bricker “Technology and Environment: the Postwar House in Southern California,” held in spring 2013 at the Kellogg University Art Gallery at Cal Poly Pomona, funded by the Getty Foundation as part of “Pacific Standard Time Presents: Modern Architecture in L.A.”

Since 1985, I have had my own architectural practice. The Sarli house in Juniper Hills, CA (1988-93) was recognized as an Architectural Record Record House in 1995 and was published internationally. More recently, with architect Norman Millar, I designed the Ramirez house in Sea Ranch, CA (2004-12), which was included in Sea Ranch (Princeton Architectural Press, 2013) and in the July/August 2014 issue of Dwell. I have also worked on housing and community service projects; in the 1990s I won several competition prizes and was an invited participant in two funded exhibitions at the Municipal Art Gallery in Los Angeles.

E-mail: jesheine@uoregon.edu
Phone: 541-346-8175
Office: 381A Lawrence Hall
MArch, Princeton University, 1979
AB, Mathematics; Brown University, 1975
KEVIN VAN DEN WYMELENBERG

ASSOCIATE PROFESSOR | DEPARTMENT OF ARCHITECTURE

Email: kvandy@uoregon.edu
Office: 486 Lawrence Hall
Phone: 541-346-8071
E-mail: kevinvdw@uoregon.edu

Van Den Wymelenberg has consulted on over 400 new construction and major renovation projects with architects and engineers regarding building performance since 2000. Five of these projects have been recognized with AIAs Committee on the Environment Top 10 Awards and many others are LEED certified. He has presented at many conferences including IES National, Lightfair International and Passive Low Energy Architecture. He has authored several papers and two books related to daylighting, visual comfort, and low energy design strategies.

Van Den Wymelenberg has completed over $10.7M in funded research and outreach in energy and indoor environmental quality for the Northwest Energy Efficiency Alliance (NEEA), United States Environmental Protection Agency, The Alfred P. Sloan Foundation, Idaho Power Company, Avista Utilities, The New Buildings Institute and others. Kevin’s work with the BioBE Center is aimed at understanding and manipulating microbial communities to support improved human health indoors. Kevin and others. Kevin's work with the BioBE Center is aimed at understanding and manipulating microbial communities to support improved human health indoors. Kevin's work with the BioBE Center is aimed at understanding and manipulating microbial communities to support improved human health indoors.

Dr. Kevin Van Den Wymelenberg is an Associate Professor at the University of Oregon. He is the Director of the Energy Studies in Building Laboratory (ESBL) and Co-director of the Biology and the Built Environment Center (BioBE) in Eugene and Portland, OR. He has a PhD in the Built Environment from the University of Washington. He teaches classes in daylighting, integrated design principles, energy performance in buildings, environmental control systems, architectural research methods, and design studio. Van Den Wymelenberg has consulted on over 400 new construction and major renovation projects with architects and engineers regarding building performance since 2000. Five of these projects have been recognized with AIAs Committee on the Environment Top 10 Awards and many others are LEED certified. He has presented at many conferences including IES National, Lightfair International and Passive Low Energy Architecture. He has authored several papers and two books related to daylighting, visual comfort, and low energy design strategies.

Van Den Wymelenberg is the Chair of the IENSA’s Daylight Metrics Committee and co-author on IES document LM-83 that serves as partial basis for the LEED V4 Daylighting Credit. He has consulted on over 400 new construction and major renovation projects with architects and engineers regarding building performance since 2000. Five of these projects have been recognized with AIAs Committee on the Environment Top 10 Awards and many others are LEED certified. He has presented at many conferences including IES National, Lightfair International and Passive Low Energy Architecture. He has authored several papers and two books related to daylighting, visual comfort, and low energy design strategies.

Van Den Wymelenberg has completed over $10.7M in funded research and outreach in energy and indoor environmental quality for the Northwest Energy Efficiency Alliance (NEEA), United States Environmental Protection Agency, The Alfred P. Sloan Foundation, Idaho Power Company, Avista Utilities, The New Buildings Institute and others. Kevin’s work with the BioBE Center is aimed at understanding and manipulating microbial communities to support improved human health indoors. Kevin and others. Kevin's work with the BioBE Center is aimed at understanding and manipulating microbial communities to support improved human health indoors. Kevin and others. Kevin's work with the BioBE Center is aimed at understanding and manipulating microbial communities to support improved human health indoors.

Van Den Wymelenberg has completed over $10.7M in funded research and outreach in energy and indoor environmental quality for the Northwest Energy Efficiency Alliance (NEEA), United States Environmental Protection Agency, The Alfred P. Sloan Foundation, Idaho Power Company, Avista Utilities, The New Buildings Institute and others. Kevin’s work with the BioBE Center is aimed at understanding and manipulating microbial communities to support improved human health indoors. Kevin and others. Kevin's work with the BioBE Center is aimed at understanding and manipulating microbial communities to support improved human health indoors. Kevin and others. Kevin's work with the BioBE Center is aimed at understanding and manipulating microbial communities to support improved human health indoors.
Students interested in any of these topics are encouraged to contact Siobhan to learn about current research opportunities.

- The impacts of sunlight composition on perceptual evaluations of architecture
- The impacts of light exposure on human health through hormonal responses in the brain
- The use of virtual reality to study subjective, behavioral, and physiological responses to space
- The impacts of climate on perception, emotion, and comfort in architecture

CURRENT RESEARCH TOPICS

She has published numerous peer-reviewed journal and conference articles on this work and combines scientific publication with applied creative practice. Her applied work offers new simulation workflows for the multi-criteria evaluation of light for human perception, comfort, and health.

BACKGROUND

Siobhan earned her professional BArch from Cornell University in 2008 and her SMArchS degree in Building Technology from MIT in 2011. She has taught design studio and seminar courses in environmental systems at Cornell University, Northeastern, MIT, and EPFL. Her professional work experience includes KVA matX, Snøhetta, MSR, Epiphyte lab, and Gensler. As a continuation of her thesis at MIT, Siobhan’s PhD dissertation used experiments to measure the impacts of daylight and spatial composition on perceptual responses to architecture and proposed simulation-based algorithms to predict these responses under varied climatic conditions.

Siobhan is an Assistant Professor of Architecture and Chair of the Baker Lighting Lab. She is also a co-founder of OCULIGHT dynamics, a Swiss company offering daylight design support through custom simulation-based tools. Her research and professional work explore fundamental & applied research topics at the intersection of architectural design, human perception, environmental dynamics, and building performance with a focus on occupant well-being. Siobhan’s current research uses virtual reality to map human responses to daylight and composition in immersive architectural environments. Her applied work offers new simulation workflows for the multi-criteria evaluation of light for human perception, comfort, and health.

FUNDAMENTAL & APPLIED RESEARCH

Regardless of the many other reasons why we enclose space, in the end, we build places so that they may become for us a deeper way of being in this world.

There are three themes that characterize my process:

1. The landscape is the one reality which precedes us, precedes whatever we make of it. The land is vast, indifferent, and tough. It has dense physical character and a deep story of climate and time that asks that we build call forth its enduring quality not because the buildings matter less, but because they are the next most permanent thing that makes the spirit of the land recognizable, in a language that comes from our own hands.

2. At the heart of architecture is the actions of ordinary living, an appreciation for the deeply recurring everyday moments: looking out a window, mounting steps, and confi gured in the sun.

3. And what we build will outlive us. Great architecture must embody qualities that endure. It cannot aff ord the ephemeral trappings of fashion, nostalgia, or the inevitable obsolescence of the avant garde. True beauty is timeless. The reason we are moved by ancient buildings in foreign cultures, in the absence of any language or written story, is because they awaken in our hearts the deeper archetypal feelings that unify our humanity. Without language, without even knowledge of ritual or history, is because they awake in our hearts the deeper archetypal feelings that unify our humanity. Without language, without even special knowledge, or trink of technology, a receptive space of silence is opened inside of us. Stone and wall and ancient dust of light have hallowed the hopes and aspirations of a people not so very diff erent from us, or from what we ourselves seek so many hundreds of years later.

Inevitably, if those settings don’t ring true, if they don’t become the sustaining measure of our presence on this earth, if we look at a door and do not see the moment at which everything may change, then it is likely we may never recognize the transcendent capacity of what we build.

And what we build will outlive us. Great architecture must embody qualities that endure. It cannot aff ord the ephemeral trappings of fashion, nostalgia, or the inevitable obsolescence of the avant garde. True beauty is timeless. The reason we are moved by ancient buildings in foreign cultures, in the absence of any language or written story, is because they awaken in our hearts the deeper archetypal feelings that unify our humanity. Without language, without even knowledge of ritual or history, is because they awake in our hearts the deeper archetypal feelings that unify our humanity. Without language, without even special knowledge, or trink of technology, a receptive space of silence is opened inside of us. Stone and wall and ancient dust of light have hallowed the hopes and aspirations of a people not so different from us, or from what we ourselves seek so many hundreds of years later.

Regardless of the many other reasons why we enclose space, in the end, we build places so that they may become for us a deeper way of being in this world.

James W. Givens Design, Eugene, Oregon, 1989 to present. I place great emphasis on a design process that is closely tied to the direct experience of the place itself. Always, it is striving to allow a deeper way of being in the world.
Melinda’s areas of expertise include foundations design and design media, with an emphasis on fundamental drawing skills and hand-drawn media. She teaches undergraduate foundations design studios, graduate foundations media, and an elective drawing course. She has also taught intermediate design studios, with an emphasis on issues of social justice and social and environmental systems. Her research interests have focused on the relationship between social and environmental systems and the built environment. Her scholarly work includes conference papers that investigate issues of diversity and identity, especially as it relates to pedagogies of architectural education. Her master’s thesis, The Wheel Within the Wheel: Efficiency, Sustainability, & the Technological Network of Housing Production, investigated the relationship between efficiency arguments, sustainability, and consumption.

In addition to teaching, Melinda is the proprietor of LEAN2creativeworks, an art and illustration studio based in Eugene. She does a range of commissioned work and fine art, and has a line of products that includes prints, cards, stickers, t-shirts and other illustrated sundries.

LANDRY SMITH
INSTRUCTOR | DEPARTMENT OF ARCHITECTURE

Landry Smith (AIA, NCARB) grew up in Portland, Oregon. He received both his Bachelor of Arts and Master of Architecture from Princeton University where he was awarded the Titon Prize in Fine Arts, the Irma Seltz Prize in Modern Art, the Butler Traveling Fellowship, and the Suzanne Kolarik Underwood Thesis Prize.

Prior to establishing Landry Smith Architect, he worked in New York City for Architecture Research Office, Rafi Segal Architecture Urbanism, and Andrew Berman Architect. He played key roles in numerous high profile projects including: the South Galleries at MoMA PS1, the Barry X Ball Studio Complex, The National Opera Center, the Hillhouse Avenue Bridges at Yale University, and the Kitgum Peace Museum and Archive in Uganda. Landry also took part in both MoMA PS1 Architect-in-Residence Programs—Rising Currents: Projects for New York’s Waterfront (led by Architecture Research Office and dlandstudio) and Foreclosed: Rehousing the American Dream (led by Jeanne Gang). These visionary proposals were on exhibition at The Museum of Modern Art in New York in 2010 and 2012.

Landry has taught at Princeton University, Parsons School of Design, the New Jersey Institute of Technology, and the University at Buffalo and has been a guest critic at numerous institutions including: Harvard, Columbia, Cornell, Penn, Carnegie Mellon, the Institute for Architecture and Urban Studies, Portland State, and Pratt. In 2014 he joined the faculty at the University of Oregon where he coordinates the first and second year design studios in addition to leading upper level undergraduate and graduate studios.

Landry is a member of the American Institute of Architects, NCARB Certified, and a Registered Architect in New York and Oregon.